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Abstract— Fast multipliers are essential parts of digital signal 
processing systems. The speed of multiply operation is of great 
importance in digital signal processing as well as in general 
purpose processors today especially since the media processing 
took off. We present a Fast fourier transform implementation 
using Twin precision technique. The twin precision technique 
can reduce the power dissipation by adapting a multiplier to the 
bit width of the operands being computed. The algorithm used 
here is Baugh-Wooley algorithm. By adapting to actual 
multiplication bit-width using twin precision technique, it is 
possible to save power, increase speed, double computation 
throughput  and highly efficient. By using this the execution time 
of a Fast fourier transform is reduced with 15% at a 14% 
reduction in datapath energy dissipation.  
 
Keywords— Fast Fourier Transform, Highly efficient, Baugh-
Wooley Algorithm. 

I. INTRODUCTION 

 
        During the last decade of integrated electronic design 
ever more functionality has been integrated on to the same 
chip paving the way for having a system on single chip. The 
strive for ever more functionality increase the demands on 
circuit designers that have to provide the foundations for all 
these functionality. With an increased interest and use of 
reconfigurable [1] architectures there is a need for flexible and 
reconfigurable computational units that can meet the demand 
of high speed, high throughput, low speed and area efficiency. 
Multiplications are complex to implement and they continue 
to give the designers headaches when trying to efficiently 
implement multipliers in hardware. Multipliers are therefore 
interesting to study, when investigating how to design flexible 
and reconfigurable computations. 
             
           Today complex circuits are described in hardware 
descriptive languages like Vhdl and verilog and are 
synthesized to gate level. A core operation in actual circuits, 
especially in Digital signal processing like Filtering, 
Modulation, Video processing, Neural networks, Satellite 

Communication, Graphics or Control systems etc is 
multiplication. In past multiplication was generally 
implemented via addition, subtraction and shift operations. 
Multiplication can be considered as a series of repeated 
additions. The repeated addition method suggested by 
arithmetic definition is slow that is almost always replaced by 
algorithm that’s make use of positional representation. It is 
possible to decompose multipliers into two parts. The first part 
is dedicated to generate partial products and the second one 
collects and adds them. 
              
          Multiplication is therefore a multi operand operation. 
To extend multiplication to both signed and unsigned numbers, 
a convenient number system would be the representation of 
numbers in two’s complement format. In this we present the 
Fast fourier transform implementation using Twin precision 
technique. By using the number of multiplications has been 
reduced. This can be achieved in less amount of time, 
therefore we get high throughput, high efficient, high speed. 
The algorithm used here is Baugh-Wooley algorithm.   

 

II. FAST FOURIER TRANSFORM 

 
                   Fast fourier transform is an efficient algorithm to 
compute the Discrete fourier transform and its inverse. A DFT 
decomposes a sequence of values into components of different 
frequencies. This operation is useful in many fields but often 
computing is too slow to be practical. An FFT is a way to 
compute same result more quickly; computing the DFT of N 
points is the naïve way it takes O(N2) arithmetical operations, 
while FFT computes it in only in O(N log N) operations.  
    
           The DFT is defined by the formula 
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                 Evaluating this definition directly require O(N2) 
operations. To illustrate the savings of  FFT consider the 
count of complex multiplications and additions. Evaluating 
the sum of DFT’s involves N2 complex multiplications and  
N(N-1) addition operations. The well known Cooley-Tucky 
algorithm [2] for N a power of 2 can compute the same result 
with only (N/2) log2  N complex multiplier and N log2 N 
complex additions. A basic element of Butterfly model is 
shown in Fig.1. 

 
 

 
 

Fig . 1 Basic butterfly computation in the decimation-in-time 
FFT algorithm. 

 
             The butterfly element is used to construct larger 

structures to perform larger transformations. A structure of 8-
point FFT using butterfly model is shown in Fig.2. where it 
also shown that there are  three stages  in 8 –point FFT 
calculation. 

 
 

    Fig.2. Eight-point decimation-in-time FFT algorithm. 

   

 

 

          From the fig.2. it mainly shows the basic butterfly 
model with complex multiplication and addition. So in the 
coming topics we present our twin precision technique and we 
can show how it easily performed. 

III. PROPOSED MODEL 

 
              In this we propose a Twin precision technique for the 
fast implementation of Fast Fourier transform using Baugh –
Wooley algorithm.Thia can be seen in the next topics. 
 

A. Twin Precision technique 

 
For a first analysis of the twin-precision [3] 

technique, the discussion will be based on an illustration of an 
unsigned binary multiplication. In an unsigned binary 
multiplication each bit of one of the operands, called the 
multiplier, is multiplied with the second operand, called 
multiplicand. That way one row of partial products is 
generated. Each row of partial products is shifted according to 
the position of the bit of the multiplier, forming what is 
commonly called the partial-product array. Finally, partial 
products that are in the same column are summed together, 
forming the final result. An illustration of an 8-bit 
multiplication is shown in fig.3  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

       Fig. 3: Illustration of an unsigned 8-bit multiplication 
 
               Let us look at what happens when the precision of 
the operands is smaller than the multiplier we intend to use. In 
this case, the most significant bits of the operands will only 
contain zeros, thus large parts of the partial-product array will 
consist of zeros. Further, the summation of the most 
significant part of the partial-product array and the most 
significant bits of the final result will only consist of zeros. An 
illustration of an 8-bit multiplication, where the precision of 
the operands is four bits, is shown in Fig.4. 
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Fig .4. Illustration of an unsigned multiplication, where the 
precision of operands is smaller than precision of 
multiplication. Unused bits of operands and products, as well 
as unused partial products are shown in gray 

 
Fig. 4.shows that large parts of the partial products 

are only containing zeros and are, thus, not contributing with 
any useful information for the final result. What if these 
partial products could be utilized for a second, concurrent 
multiplication? Since partial products of the same column are 
summed together, it would not be wise to use any of the 
partial products that are in the same column as the 
multiplication that is already computed. Looking closer at the 
4-bit multiplication marked in white in Fig. 4, one can also 
observe that the column at position S7 should not be used 
either. This is because that column might have a carry from 
the active part of the partial-product array that will constitute 
the final S7. 
              
               Altogether this makes only the partial products in the 
most significant part of the partial-product array available for 
a second multiplication. In order to be able to use the partial 
products in the most significant part, there has to be a way of 
setting their values. For this we can use the most significant 
bits of the operands, since these are not carrying any useful 
information. If we are only looking at the upper half of the 
operands, the partial products generated from these bits are the 
ones shown in black in Fig. 5. By setting the other partial 
products to zero, it is then possible to perform two 
multiplications within the same partial-product array, without 
changing the way the summation of the partial-product array 
is done. How the partial products, shown in gray, can be set to 
zero will be investigated in the implementation section later 
on. 

 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig .5.Illustration of an unsigned 8-bit multiplication, where a 
4-bit multiplication is shown is white is computed in parallel 
with a second 4-bit multiplication shown in black. 
        
              Assume, for now, that there is a way of setting 
unwanted partial products to zero, then it suddenly becomes 
possible to partition the multiplier into two smaller multipliers 
that can compute multiplications in parallel. In the above 
illustrations the two smaller multiplications have been chosen 
such that they are of equal size. This is not necessary for the 
technique to work. Any size of the two smaller multiplications 
can be chosen, as long as the precision of the two smaller 
multiplications together are equal or smaller than the full 
precision [4]  (NFULL) of the multiplication, equation below. 
To be able to distinguish between the two smaller 
multiplications, they are referred to as the multiplication in the 
Least Significant Part (LSP) of the partial-product array with 
size NLSP, shown in white, and the multiplication in the Most 
Significant Part (MSP) with size NMSP , shown in black. 
 
              NFULL >= NLSP + NMSP    

 
It is functionally possible to partition the multiplier 

into even more multiplications. For example, it would be 
possible to partition a 64-bit multiplier into four 16-bit 
multiplications. Given a number K of low precision 
multiplications their total size need to be smaller or equal to 
the full precision multiplication. 

 
 
 

              For the rest of this investigation, the precision of the 
two smaller multiplications will be equal and half the 
precision (N=2) of the full precision (N) of the multiplier. 
This is the main twin precision concept which is generally 
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used to do the multiplication very easily. So by using this we 
can get the high throughput, high speed. The Fast Fourier 
transform can be implemented using Bugh-Wooley algorithm. 
This can be explained in the next section. 

 
 

B. Baugh-Wooley Algorithm 

 
           In the previous section, the concept of twin precision 
was introduced by looking at an unsigned multiplication. 
However, for many applications signed multiplications are 
needed and consequently an unsigned multiplier is of limited 
use. In this section a twin-precision multiplier based on the 
Baugh-Wooley (BW) algorithm will be presented.The Baugh-
Wooley algorithm [5] is an efficient way to handle sign bits. 
The BW algorithm is a relative straightforward way of doing 
signed multiplications. Fig. 6 illustrates the algorithm for an 
8-bit case, where the partial product array has been 
reorganized according the the scheme of Hatamian[6]. The 
creation of the reorganized partial-product array comprises 
three steps: 
          i)the most significant partial product of the first (N – 1) 
rows and the last row of partial     
              products except the most significant has to be negated, 
           ii) a constant one is added to the Nth column, 
          iii) the most significant bit (MSB) of the final result is 
negated. 

 

 
Fig. 6. Illustration of an 8-bit Baugh-Wooley multiplication 

 
To combine twin-precision with BW is not as simple 

as for the unsigned multiplication,where only parts of the 
partial products needed to be set to zero. To be able to 
compute two signed N=2 multiplications, it is necessary to 
make a more sophisticated modification of the partial-product 
array. Fig. 6 shows an illustration of an 8-bit BW 
multiplication, where two 4-bit multiplications have been 
depicted in white and black. When comparing the illustration 
of Fig. 6 with that of Fig. 7 one can see that the only 
modification needed to compute the 4-bit multiplication in the 

MSP of the array is an extra sign bit '1' in column S12. For the 
4-bit multiplication in the LSP of the array, there is a need for 
some more modifications. Looking at the active partial-
product array of the 4-bit LSP multiplication (shown in white), 
we see that the most significant partial product of all rows, 
except the last, needs to be negated. For the last row it is the 
opposite, here all partial products, except the most significant, 
are negated. Also for this multiplication a sign bit '1' is needed, 
but this time in column S4. Finally the MSB of the result 
needs to be negated to get the correct result of the two 4-bit 
multiplications. 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

Fig .7.Illustration of signed 8-bit multiplication using Baugh-
Wooley algorithm, where 4-bit multiplication shown in white 
is computed in parallel with a second 4-bit multiplication 
shown in black. 
 
 
            To allow for the full-precision multiplication of size N 
to coexist with two multiplications of size N=2 in the same 
multiplier, it is necessary to modify the partial-product 
generation and the reduction tree. For the N=2-bit 
multiplication in the MSP of the array all that is needed is to 
add a control signal that can be set to high, when the N=2-bit 
multiplication is to be computed and to low, when the full 
precision N multiplication is to be computed. To compute the 
N=2-bit multiplication in the LSP of the array, certain partial 
products need to be negated. This can easily be accomplished 
by changing the 2-input AND gate that generates the partial 
product to a 2-input NAND gate followed by an XOR gate. 
The second input of the XOR gate can then be used to invert 
the output of the NAND gate. When computing the N=2-bit 
LSP multiplication, the control input to the XOR gate is set to 
low making it work as a buffer. When computing a full-
precision N multiplication the same signal is set to high 
making the XOR work as an inverter. 
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Fig .8. Block diagram of signed 8-bit multiplier using Baugh 
Wooley algorithm, where 4-bit multiplication shown in white 
is computed in parallel with a second 4-bit multiplication 
shown in black. 

 
 

               Fig. 8 shows an implementation of a twin-precision 
8-bit BW multiplier. The modifications of the reduction tree 
compared to the unsigned 8-bit multiplier in Fig. 8 consist of 
three things; i) the half adders in column 4 and 8 have been 
changed to full adders in order to fit the extra sign bits that are 
needed, ii) for the sign bit of the 4-bit MSP multiplication 
there is no half adder that can be changed in column 12, so 
here an extra half adder has been added which makes it 
necessary to also add half adders for the following columns of 
higher precision, and iii) finally XOR gates have been added 
at the output of column 7 and 15 so that they can be inverted. 
The simplicity of the BW implementation makes it easy to 
also compute unsigned multiplications. All that is needed is to 
set the control signals accordingly, such that none of the 
partial products are negated, the XOR gates are set to not 
negate the final result and all the sign bits are set to zero. 
 
            
               From the above sessions we have seen the Twin 
precision technique fundamentals and also discussed about 
Baugh-Wooley algorithm and its implementation using Twin 
precision technique. The main aim is to implement Fast 
Fourier transform using Twin precision technique. The Fast 
Fourier transform butterfly model is shown in Fig.9. 

 

               

 
      
           Fig.9. Butterfly model of Fast Fourier transform 

 
  

               From the above Fig.9. thesis can be taken in 3 stages. 
The Fast Fourier transform consists of multiplication and 
addition. The schematic of the butterfly consists of a 
complex multiplier,  complex adder and complex 
subtractor.The butterfly operation processor section 
performs the butterfly operation, with each 8-bit 
input data width. A complete butterfly operation 
requires complex multiplier,  complex adder and 
complex subtractor.This consists of four real 
multipliers,  three real adders and three real 
subtractors. In butterfly operation when first cycle 
is finished then the first result bit of each real 
multiplication is ready, then the additions and 
subtractions are operated. This takes a long time to 
execute. So for that reason we present a Twin 
precision technique. In this the multiplication is 
done parallely that for example if we want to 
execute 64-bit operation we can execute the two 8-
bit multipliers parellaly. By using this we can get 
high throughput.  It is highly efficient,  low power, 
high speed. The coding is done by using vhdl and 
simulation is done in Xilinx ISE simulator.   
Multiplications in above block diagram are performed by 
using twin precision technique. Implies, efficient utilization 

can be done throughout entire process. 
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              In this paper we present Fast Fourier transform 
implementation using Twin precision technique. We select 
Baugh –Wooley because compared to Booth algorithm and 
Modified Booth algorithms [7] it is highly efficient and high 
speed. It can be done in less amount of time. So by this 
algoritm and the Twin precision technique we can get high 
throughput which is highly efficient, low power, high speed. 
 
 

IV. SIMULATION RESULTS 

 

 
 

 
Fig. 10.Simulation Results of Baugh-Wooley using Twin 

Precision 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
Fig. 11.Simulation Results of Fast Fourier Transform using 

Twin Precision technique and Baugh-Wooley Algorithm. 
 
 
      Here Fig. 10. shows the result for Baugh-Wooley 

algorithm using Twin precision technique. Here in the main 
aim of this technique is to get the result in less amount of time. 
This reduces the number of multipliers. In Fig.10 two 8-bits 
has been taken and the result is 16-bit.This result is divided 
into two 8-bits in less amount time. 

   
    In Fig.11.this shows the result of Fast Fourier Transform 

using Twin Precision technique.Here the algorithm used is 
Baugh-Wooley. We used Baugh-Wooley algorithm Because 
this is very efficient algorithm when compared to General 
multipliers,Booth algorithm and Modified Booth algorithms. 
This Baugh-Wooley algorithm with Twin precision technique 
is the best for the multipliers to execute in less amount of time. 
In this we generate the Baugh-Wooley algorithm using Twin 
precision and Fast Fourier transform using Twin precision. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

M.Sahithi  et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (1) , 2012, 2957 - 2963

2962



V. CONCLUSIONS 

  
           The Fast Fourier transform implementation 
using Twin precision technique has been 
implemented. The twin-precision technique, which offers 
flexibility at a low implementation overhead, makes it 
possible to efficiently deploy these flexible architectures. We 
present the Baugh-Wooley algorithm. This makes the 
multiplier to run fastly that is high throughput, high speed, 
high efficient. It is executed in less amount of time. The main 
applications are DSP processors, Communication applications 
etc.  By adapting to actual multiplication bit-width using twin 
precision technique, it is possible to save power, increase 
speed, double computation throughput and highly efficient. 
By using this execution time of a Fast Fourier transform is 
reduced with 15% at a 14% reduction in datapath energy 
dissipation.  
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